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A successful attack strategy in neural cryptography is presented. The neural cryptosystem, based on syn-
chronization of neural networks by mutual learning, has been recently shown to be secure under different
attack strategies. The success of the advanced attacker presented here, called the “majority-flipping attacker,”
does not decay with the parameters of the model. This attacker’s outstanding success is due to its using a group
of attackers which cooperate throughout the synchronization process, unlike any other attack strategy known.
An analytical description of this attack is also presented, and fits the results of simulations.
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The use of neural networks in the field of cryptography
has recently been suggested[1] and has since been a source
of interest for researchers from different fields[2]. The neu-
ral cryptosystem is based on the ability of two neural net-
works to synchronize. The two networks undergo an online
learning procedure calledmutual learning, in which they
learn from each other simultaneously, i.e., every network acts
both as a teacher and as a student. At every time step the
networks receive a common input vector, calculate their out-
puts, and update their weight vectors according to the match
between their mutual outputs[3]. The input/output relations
are exchanged through a public channel until their weight
vectors are identical and can be used as a secret key for
encryption and decryption of secret messages. Thus we have
a public key-exchange protocol which is not based on num-
ber theory nor does it involve long numbers and irreversible
functions, and is essentially different from any other crypto-
graphic method known before.

The question is whether this system is secure, and to what
degree? Since the data are transferred through a public chan-
nel, any attacker who eavesdrops might manage to synchro-
nize with the two parties, and reveal their key. Yet the at-
tacker is in a position of disadvantage: while the parties
perform mutual learning and approach one another, the at-
tacker performs dynamic learning and “chases” them, there-
fore they have an advantage over him. The system’s security
depends on whether they manage to exploit this advantage so
that the attacker will forever stay behind.

The synchronization is based on a competition between
attractive and repulsive stochastic forces between the parties.
Attractive forces bring them closer to each other, and repul-
sive forces drive them apart and delay the synchronization.
Synchronization is possible only if the attractive forces are
stronger than the repulsive forcessA.Rd. On the one hand,
if the attractive forces are too strong, synchronization is rela-
tively fast and easy, so that an attacker eavesdropping on the
line and trying to synchronize will manage to do so easily.
On the other hand, if the repulsive forces are too strong,
synchronization will be hard for the attacker, but also for the
two parties. A secure system is one which manages to bal-
ance these forces so that the net force between the parties is
positive and stronger than for the attackerfsA−Rdparties. sA
−Rdattackerg.

The following is the model we use: The networks are tree
parity machines(TPM) with K hidden unitssi = ±1, i
=1, . . . ,K feeding a binary output,t=pi=1

K si, as shown in
Fig. 1. We usedK=3. The networks consist of a discrete
coupling vectorwi =Wi1, . . . ,WiN and disjointed sets of in-
puts xi =Xi1, . . . ,XiN containingN elements each. The input
elements are random variablesxij = ±1. Each component of
the weight vector can take certain discrete valuesWij
= ±L , ±sL−1d , . . . , ±1,0, and isinitiated randomly from a
flat distribution.

The local field in theith hidden unit is defined as

hi = wi ·xi, s1d

and the output in theith hidden unit is the sign of the local
field. The output of the tree parity machine is therefore given
by

t = p
i=1

K

sgnshid = p
i=1

K

si .

During the mutual learning process, the two machinesA
and B exchange their output valuestA/B. They update their
weights using the Hebbian learning rule only in cases in
which their outputs agree and only in hidden units which
agree with the output,

FIG. 1. A tree parity machine withK=3.
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wi
Ast + 1d = wi

Astd + xit
AustAsi

AdustAtBd,

wi
Bst + 1d = wi

Bstd + xit
BustBsi

BdustAtBd. s2d

This leads them to a parallel state in whichWA=WB. The
attackerC tries to learn the weight vector of one of the two
machines, sayA, yet unlike the simple teacher-student sce-
nario [4,5], the teacher’s weights in this case are time-
dependent, therefore the attacker must use some attack strat-
egy in order to follow the teacher’s steps.

The following are possible attack strategies, which were
suggested by Shamiret al. [2]. Thegenetic attack, in which
a large population of attackers is trained, and at every new
time step each attacker is multiplied to cover the 2K−1 pos-
sible internal representations ofhsij for the current outputt.
As the dynamics proceed, successful attackers stay while the
unsuccessful ones are removed.The probabilistic attack, in
which the attacker tries to follow the probability of every
weight element by calculating the distribution of the local
field of every input and using the output, which is publicly
known. The naive attacker, in which the attacker imitates
one of the parties. The most successful attacker suggested so
far is the flipping attack (geometric attack), in which the
attacker imitates one of the parties, but in steps in which his
output disagrees with the imitated party’s output, he negates
(“flips” ) the sign of one of his hidden units. The unit most
likely to be wrong is the one with the minimal absolute value
of the local field, therefore that is the unit which is flipped.

While the synchronization time increases withL2 [6], the
probability of finding a successful flipping attacker decreases
exponentially withL,

P ~ e−yL

as seen in Fig. 2. Therefore, for largeL values the system is
secure[6]. This can be supported also by the fact that close
to synchronization, the probability for a repulsive step in the
mutual learning betweenA and B scales likesed2, while in
the dynamic learning between the naive attackerC andA it
scales likee, where we definee=probssi

CÞsi
Ad [9].

The attackers mentioned above try to imitate the parties,
each using different heuristics. They use an ensemble of in-
dependent attackers. These attackers all develop an overlap
with the parties during the synchronization process and also
an overlap between themselves,yet each attacker evolves
independently, and is not influenced by the state of the other
attackers.

It has been shown that among a group of Ising vector
students which perform learning, and have an overlapR with
the teacher, the best student is the center-of-mass vector
(which was shown to be an Ising vector as well), which has
an overlapRc.m.~ÎR for RP f0:1g [10]. Therefore, letting
the attackers cooperate throughout the process may be to
their advantage.

The new “majority flipping attacker” presents a general
strategy which can be applied to some of the heuristic attack-
ers mentioned, and can improve their results, and it uses the
attackers as acooperating group rather than as individuals,

an approach which has not been done before. The majority
strategy is the following: we start with a group ofM random
attackers. Instead of letting them work independently and
hope for one to be successful, we let them cooperate—when
updating the weights, instead of each machine being updated
according to its own result, all are updated according to the
majority’s result. This “team-work” approach improves the
attacker’s performance. Naturally, we chose to apply it to the
most successful attacker, the “flipping attacker,” thus creat-
ing the “majority-flipping attacker.”

The main result of this paper is the improvement of the
success rate of the flipping attacker when using the majority
scheme: The regular flipping attacker, although relatively
successful, is weakened by increasingL, and the probability
for a successful attacker,P, drops exponentially withL [6].
When using the majority scheme, this probability seems to
approach a constant value,0.5 independent ofL [7].

When applying the majority strategy to the flipping at-
tack, we createM flipping attackers. In the beginning of the
process, during a certain time, the regular flipping attack is
performed; those among theM machines that disagree with
party A have one of their hidden unit’s signs negated, and
then their weights’ vectors updated according to their new
internal representations.

After a certain time, we start to perform the majority pro-
cedure: In every odd time step we perform the regular flip-
ping attack, and in every even time step we perform a
majority-flipping procedure, which consists of the following
two steps.

(i) All attackers who disagree with partyA flip one of
their hidden units, according to the regular flipping attack
procedure.

(ii ) Now all the M attackers have the same output but
different internal representations ofhsij. We check which of
the four possible internal representations appears the most.

FIG. 2. The attacker’s success probabilityP as a function ofL,
for the flipping attack and the majority-flipping attack, withN
=1000, M =100, averaged over 1000 samples. To avoid fluctua-
tions, we define the attacker as successful if he found out 98% of
the weights.
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Then, instead of updating every attacker according to its own
internal representation, all are updated according to the same
internal representation—the majority’s representation. It is as
if we let the machines “vote,” and all must use the internal
representation that was “elected.”

When the attackers perform the majority step, they all
perform the same step, therefore an overlap is developed
between them. The larger the overlap between them, the less
effective they are, because effectively there are fewer attack-
ers. In the limit when all the attackers are identical, there is
effectively only one attacker. There is no way to avoid this
similarity between them. We rather prevent it from develop-
ing too quickly, and we do so by performing the majority
step only on even time steps, and not from the beginning of
the process but after a waiting time of about1

3 of the entire
synchronization time[11].

The result of using this scheme is shown in Fig. 2. When
comparing the success of the flipping attacker with and with-
out the majority strategy, we see that for the latter the success
probability drops exponentially withL, while for the former
it remains around 0.5 even whenL is increased. Similar re-
sults of the majority-flipping attack success were obtained in
the case of the chaotic neural network model[8].

Why is the majority-flipping attack so successful? Every
update of the weights can either bring every attacker closer
to partyA (an “attractive step”) or farther away(a “repulsive
step”). A repulsive step between the attacker andA occurs
when there is a difference in their internal representations(in
steps whereA andB perform an update). A good attack strat-
egy is one that manages to reduce the probability for a re-
pulsive step, and the majority-flipping attacker does this by
using the majority vote. Once an overlap is developed be-
tween an attacker and machineA, the probability for a cor-
rect (attractive) internal representationPa is larger than the
probability for a repulsive one. For a group ofM @1 uncor-
related attackers, which all have an overlaprAC with A, the
probability that their majority is correct is 1. However, if the
attackers are correlated, which is the case here,Pa,1, yet it
is larger thanPa of just one flipping attacker, as can be seen
in Fig. 3 (in our simulations we obtained similar results for
all M .50). The majority’s advantage over a random choice
is the essence of this attack, as shown also in the Bayes
optimal classification algorithm versus the Gibbs learning
algorithm, where choosing the majority proves to be better
than a random choice[10].

The semianalytical description of this process confirms
these results and gives us further insight into the majority
attacker’s success. In the semianalytical description, we de-
scribe the system usings2L+1d3 s2L+1d order parameters,
and we manage to simulate the system in the thermodynamic
limit. We represent the state of the TPMs using a matrixF of
size s2L+1d3 s2L+1d, as described in[9]. The elements of
F are fqr, whereq,r =−L , . . . ,−1,0,1, . . . ,L. The element
fqr represents the fraction of components in a weight vector
in which theA’s components are equal toq and the matching
components ofB are equal tor. Hence, the overlap between
the two units and the norm of partyA, for instance, are given
by

R= o
q,r=−L

L

qrfqr, QA = o
q=−L

L

q2fqr s3d

and the overlaprAB=RAB/ÎQAQB. There are three matrices
representing the mutual overlap between a pair of hidden
units amongA, B, andC (we omitted the hidden unit’s index
for the sake of simplicity). We do not createM attackers but
rather one that represents one of theM attackers in the simu-
lations.

The procedure at every time step is as follows.

(i) We randomly chooseK local fields for theK hidden
units of machineA, from a Gaussian distribution with the
mean 0 and the standard deviationÎQA.

(ii ) We then randomly chooseK local fields for theK
hidden units of machineB, from a Gaussian distribution with
the mean RABhA/QA and the standard deviation
ÎQB−RAB

2 /QA (taking into accountB’s overlap withA).
(iii ) If the outputs ofA andB disagree, they are not up-

dated and we continue to the next time step. If they agree, we
update the matrices representingA andB and then update the
attacker as described in the next step.

(iv) We set the internal representation of the attacker. For
K=3, there are eight possible internal representations. We
calculate their probabilitiesP1, . . . ,P8, according to the at-
tacker’s overlap withA andB and the local fields ofA andB.
For example, the internal representation +++ has the prob-
ability

Ps+ + + d = p
m=1

3

Pshm
C . 0uhm

A,hm
B,hR,Qjd.

For simplicity, we assume that there is no significant dif-
ference between the attacker’s overlap withA and its overlap
with B and therefore we use only one of them so that

FIG. 3. The probability of attackerC to have a correct internal
representation as a function of the average overlap between the
attackers and one of the parties, for flipping and majority-flipping
attacks, measured in simulations withN=1000,M =300, averaged
over 105 samples.
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Pshi
C . 0uhi

A,hR,Qjd = HS − RAChA

ÎQA
2QC − RAC

2 QA
D ,

whereHsxd=ex
` e−t2/2dt/Î2p.

Next we simulate the flipping, when the eight possible
states are reduced to four: either states 1–4(states with
positive output) flip to 5–8 (states with negative output) or
vice versa, depending onA’s output. We calculate the
probabilities of the states’ flipping. For example, the
probability that state +++ flipped to state −++ is
Ps+++dPsh1

C,h2
C,h1

C,h3
Cd, where

Psh1
C , h2

C,h1
C , h3

Cd =E
0

`

Psh1
Cuh1

A,h1
B,ddh1

C·

E
h1

C

`

Psh2
Cuh2

A,h2
B,ddh2

CE
h1

C

`

Psh3
Cuh3

A,h3
B,ddh3

C.

We now remain with probabilities for four possible internal
representations. In the case of a regular flipping step, we
randomly choose one of these four states according to their
probabilities, but in the case of a majority step, the probabil-
ity of choosing the correct internal presentation is higher. We
do not calculate it, but rather measure it in the simulations,
and use the measured probability(presented by the dashed
line in Fig. 3) in the analytical procedure. Figure 4 shows the
success probability of one of theM attackers as a function of
L. It shows a fairly good agreement between the analytical
and the simulation results(see[12]).

To conclude, an important step in the field of neural cryp-
tography has been made, presenting an attacking approach
under which the TPM cryptosystem is insecure. The question
is, can we create a more sophisticated system that will be
secure under the majority attack? A secure system will be
one for which the probability for a correct step of the major-
ity flipping attacker will be near the flipping attacker’s curve
in Fig. 3, yet the synchronization time of the parties will still
remain polynomial withL. There can be many ideas for such
a system, for example a system in whichK.3, so that re-
pulsive forces are stronger. Yet keeping the synchronization
time polynomial withL is not easy when repulsive forces are
too strong, so these models are still under consideration, and
the challenge still remains.
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